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The first part of this article presents an overview of the theory and phenomenology 
of truly neutral particles based on the papers of Majorana, Racah, Furry, 
McLennan, and Case. The recent development of the construct undertaken by 
Ahluwalia could be relevant for the explanation of the present experimental 
situation in neutrino physics and astrophysics. Then the new fundamental wave 
equations for self-/anti-self-conjugate type II spinors proposed by Ahluwalia are 
recast into covariant form. The connection with Foldy-Nigam-Bargmann- 
Wightman-Wigner (FNBWW)-type quantum field theory is found. Possible 
applications to the problem of neutrino oscillations are discussed. 

1. INTRODUCTION 

Neutrino physics and astrophysics has put many dark spots in the cloud- 
less sky of the Standard Model. For example, Robertson (1993) noted in this 
connection: "The solar neutrino results yield fairly strong and consistent 
indications that neutrino oscillations (Pontecorvo, 1957, 1958, 1967; Gribov 
and Pontecorvo, 1969; Bilen'kii and Pontecorvo, 1977, 1978; Bilen'kii, 1987; 
Bilen'kii and Petcov, 1987, 1989) are occurring. ''3 Though "other evidence 
for new physics is less consistent and convincing," the solar neutrino problem 
(Langacker, 1994) [and in addition the "negative mass squared" problem 
(e.g., Robertson, 1993; Weinhammer et al., 1993), 4 the atmospheric neutrino 
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3There are opposite opinions on the solar neutrino problems. For example, Morrison (1994) 
denies their existence at all: "The evidence for any solar neutrino problem is not 'compelling'." 

4See Lyubimov (1989) for an experiment in which the opposite result (m~ > 0) was reached. 
See also Boris et al., 1987. 
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anomaly (Akmedov, 1994; Fukuda et  al.,  1994), the possibility of neutrinoless 
double 13-decay (Balysh et  al.,  1992, 1994; Rosen, 1992), the "spin crisis" in 
QCD (Ashman et  al.,  1988; Dorokhov et  al.,  1993), the tentative experimental 
evidence for a tensor coupling in the w- ---) e-  + ~e -~- '~ decay (Bolotov et  
al.,  1990), 5 as well as the dark matter problem (e.g., Binney and Tremaine, 
1987; Griest, 1994)] provides sufficient reasons to search for models beyond 
the framework of the Standard Model. At the same time, the present experi- 
mental situation does not provide clear hints for theoreticians as to what 
principles should be used to explain the mentioned phenomena and to con- 
struct the "ultimate" theory. Thus, nature leaves us with many degrees of 
freedom in working out hypotheses which might seem at first sight to be 
"exotic ''6 if not "crazy" (Ahluwalia and Ernst, 1992; Dvoeglazov, 1994b-e). 

In this paper I continue the study o f j  --- 1/2 andj = 1 neutral particles 
(present knowledge state that the neutrino and the photon are the only truly 
neutral particles in nature) undertaken in Ahluwalia et al. (1994a, b) and 
Ahluwalia (1994a,b). The crucial point of those papers is "the dynamical 
role played by space-time symmetries for [fundamental] interactions". The 

5For theoretical models see Chizhov (1993) and Chizhov and Avdeev (1994). 
6A very exotic idea of nonzero electric charge of the neutrino has been proposed to explain 

the solar neutrino problem in Ignatiev and Joshi (1994a, b), based on Einstein's idea (see 
Piccard and Kessler (1925) of electric charge dequantization and its dependence on time (e.g., 
Babu and Mohapatra, 1989; Ignatiev and Joshi, 1993; Foot et al., 1993a,b; Dvoeglazov, 
1994e). For the possibility of the existence of mirror matter (e.g., a mirror photon with electric 
charge and/or mass) see Foot (1994a,b), Barr et al. (1991); see also Giveon and Witten (1994). 
According to Bandyopadhyay (1968a), "In view of the neutrino theory of light, photons are 
likely to interact weakly also, apart from the usual electromagnetic interactions... This assumed 
photon-neutrino weak interaction, if it exists, will have important beating on astrophysics. 
In fact, this interaction can then be held responsible for the following neutrino-generating 
processes in stars: 

(1) 7 +  e - o e -  + v +  v, 

(2) e-  + Z ~ e -  + Z + v + P ,  

(3) e -  + e §  + ~, 

(4) ~/ + y ~ v +  O, 

(5) ~ /+  " y ~ /  + v + P, 

(6) F ---) v + v (F ---) e- + e + ----) ~/---) v + 9) (plasma process). 

�9  energy dependence of the cross sections for these processes according to the present 
theory will be significantly different from that in other theories." Also see Bandyopadhyay 
(1968b). Ahluwalia et al. (1993) and Ahluwalia and Goldman are concerned with the theoretical 
construction of a Foldy-Nigam-Bargmann-Wightman-Wigner (FNBWW)-type quantum 
field theory; its remarkable features are that a boson can possess the opposite parity from its 
antiparticle, and a fermion and its antifermion can possess the same parities. Rembielifiski 
(1994a,b) considers the possibility that neutrinos are fermionic tachyons (according to the 
present experimental data). Nevertheless, the principle of the "absolute causality" holds for 
all kind of events. 
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ab initio construction of self-/anti-self conjugate spinors in the (j, 0) �9 (0, 
j )  representation space and derivation of some physically relevant properties 
connected with space-time symmetries were presented there. In fact, that 
work is the development of the formalism proposed in Majorana (1937), 
Racah (1937), Furry (1938, 1939), Serpe (1952), McLennan (1957), and Case 
(1957) and it could be applicable for the description of neutrino interactions 
and clarification of the present experimental situation. 

2. T H E O R Y  AND P H E N O M E N O L O G Y  OF N E U T R A L  
PARTICLES 

Kayser (1985) writes: "We have become accustomed to thinking of a 
neutrino v and its antineutrino p as distinct particles] However, it has long 
been recognized that the apparent distinction between them may be only an 
illusion. [Such] models [in which there is no difference between neutrino 
and its antineutrino] naturally follow from GUT (grand unification theories)." 
Moreover, from the viewpoint of many models beyond the Standard Model 
it is very natural for the neutrino (the spin-l/2 truly neutral particle) to be 
massive 8 (as opposed to the Glashow-Salam-Weinberg electroweak theory). 

At this point I take the liberty of presenting a little history. Majorana 
(1937) gave a derivation of a symmetrical theory of the electron and the 
positron. The essential ingredient of  that theory was the reformulation of  the 
variational principle, based on the use of noncommutative variables. This 
led him to a separation of the Dirac equation "into two distinct groups, one 
of which acts on the real part and the other on the imaginary part of  [the 
spinor wave function], �9 = U + iV." He noted: "the part of this formalism 
which refers to the U (or to the V) may be considered by itself as a theoretical 
description of  some material system, in conformity with the general methods 
of quantum mechanics . . . .  Equations constitute the simplest theoretical repre- 
sentation of a system of neutral particles." His ideas were developed in 
application to 13 radioactivity by Racah (1937) and Furry (1938, 1939). In 
fact, they analyzed the Majorana projection 9 

1 
�9 ~ ~ {0 + s~l~=l~} (1) 

7Thanks to the two-component neutrino theory proposed by Landau (1957a,b), Lee and Yang 
(1957), and Salam (1957). 

8Surprisingly, six of the present upper bounds on m~ e are negative (Gelmini and Roulet, 1994). 
For example, the LANL result is - 147 __+ 68 -+- 41 eV z and the LLNL result is - 130 +- 20 
-+ 15 eV z. The most recent measurement (1994, Troitsk) involves a new kind of systematics 
and gives -18 --- 6 eV 2. 

9The notation of Ahluwalia et al. (1994b) is used through the present paper, which is different 
from Racah (1937), Furry (1938, 1939), McLennan (1957), Case (1957), and Ryan and 
Okubo (1964). 
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The matrix of charge conjugation is defined as 

S[1/2] = e '~ --iO[1/2] 

where 7~ is the operation of complex conjugation and 

(Otji),,~, = ( -  1) j+" 5,,,_, (3) 

is Wigner's operator (OtjlJO~{ = - J* ) .  Racah noted that the symmetric 
description of a particle and an antiparticle does not always imply that two 
types of particle are physically undistinguishable. That is clear for the electron 
and the positron states, which have opposite electric charge, but this statement 
can also be applied for the neutrino: "a neutrino emitted in a [3- process may 
by absorption induce only a [3 + process, and vice versa." However, if we 
consider the symmetric Hamiltonian [the sum of HF, the Fermi Hamiltonian, 
and H~u, the Konopinski-Uhlenbeck Hamiltonian (Fermi, 1934; Konopinski 
and Uhlenbeck, 1935)], we come to the physical identity between neutrino 
and antineutrino and hence to the Majorana formalism for neutral particles, 
according to Racah, from which follows the experimental possibility of the 
neutrinoless double [3 decay discussed below. Furry (1938, 1939) proved the 
Lorentz invariance of the Majorana projection (1) as well as the persistence 
in time and the possibility of interaction of the Majorana particle with the 
nonelectric scalar potential ~/0qb. Furry also noted the noninvariance of the 
projection under the change of phase (i.e., in fact, with respect to multiplica- 
tion by a complex constant, which implies the absence of the simple gauge 
interactions of the Majorana neutral particle as opposed to the Dirac charged 
particle). Differing from Racah, he has claimed that "the results predicted 
for . . .  observed processes [[3-radioactivity] are . . .  identical with those of 
the ordinary theory. [However], the physical interpretation is quite different 
[and] an experimental decision between the formulation using neutrinos and 
antineutrinos and that using only neutrinos will . . .  be . . .  difficult. ''~~ His 
point of view is now widely accepted: as opposed to the Dirac prescription 
of the charged particle (which has four states which answer to the same 
momentum but different spin configurations of particle and antiparticle), in the 
Majorana theory forj = 1/2 particles there are just two states corresponding to 

~~ course, in the case of massless states this assertion has not given rise to opposite opinions. 
Also, Ryan and Okubo (1964) claimed the equivalence of the descriptions of the neutrino in 
terms of Majorana spinors and Weil spinors, but their arguments implied zero neutrino mass. 
The very detailed pedagogical introduction of Mannheim (1984) to the Majorana theory 
includes a discussion of mass eigenstates of the neutrino. Nevertheless, in the case of massive 
neutrinos further explanation is required of the equivalence of the two descriptions and the 
question of the number of independent states. See also footnote 22 in Furry (1938); also 
Ahluwalia et  al. (1994a,b), Ahluwalia (1994a, b), Sokolov (1957); and the discussion below. 
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the two projections of the spin, i.e., there are no "antiparticles" and no 
necessity of negative-energy states. 

Important reformulations of Majorana's work have been undertaken by 
McLennan (1957) and Case (1957). Let me reproduce the main points of 
Case's paper. 1~ By using the Majorana ansatz 12 

t~L = qg~)2j~ (4) 

where ~R,L = �89 + ys)t~, the Dirac equation can be rewritten as 

-q~a~+ + K+* = 0 (5) 

and its complex conjugate 

"q~*0~+* + K6 = 0 (6) 

Here "q~ = ~ll/21",/~ _ = c~[1/2](1 - 3,5)ytV2, ~b = t~R, and K is the mass of the 
particle in the notation of Case (1957). The matrices ~1 ~ satisfy the anticommu- 
tation relation: 

qq~*qq~ + "q~*~ = 2g ~ (7) 

The signature was chosen to be ( - 1 ,  +1, + 1, + 1). The corresponding 
Hamiltonian equations are 

i 0___~_6 = _1 tr-Vqb + K(ad#*) (8) 
Ot t 

o(acb*) 1 
i - -  - ~r-~r(A+*) + K+ (9) 

Ot i 

with Xl~ = -iAo- ~. The matrix A can be chosen as o-2 in the conventional 
representation (Case, 1957, p. 308). The representation of the proper Lorentz 
transformation is, as usual, A = exP(�89 q) with velocity v in the direction 
q. However, for spatial reflections one has to impose 

+'(x ')  = A+*(x), or +*(x) = A- l+ ' (x  ') (10) 

This form ensures that A = ipA, where p is a real number of absolute value 
unity. By using similar arguments for time reflections one has + '(x ' )  = 
Ar*(x), where A = btA, with l* being real (and its absolute value being 
equal to unity). However, the McLennan-Case consideration does not exhaust 

~ The papers of Serpe (1952) and McLennan (1957) are concerned with the massless neutrino 
and could be counted as particular cases. Let us not forget that we do not have a strong 
theoretical principle that forbids the mass of  the neutrino. 

12The definitions of K. M. Case and D. V. Ahluwalia differ by the overall phase factor. 
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all possible Majorana-like constructs. For instance, the possibility of the anti- 
self-conjugate construct, i.e., 

1 
0 ~ ~ l0  - sf~2j~} (11) 

was realized much later (Mannheim, 1984). From a physical point of view 
this corresponds to two neutrinos with opposite C P  quantum numbers (e.g., 
Halprin et al., 1976; Wolfenstein, 1981; Doi et al., 1983). 

Recently, the theory of neutral Majorana-like particles has been devel- 
oped substantially by Ahluwalia (1994a,b; Ahluwalia et al., 1994a,b). In 
particular, the generalization to higher spin particles has been proposed. The 
formalism is based on the type II bispinors (another Majorana-like construct 
which could be important for the description of higher spin particles) intro- 
duced by him. A fundamentally new wave equation was proposed there. We 
are going to discuss it in the next section. 

The type II (j, 0) • (0, j )  bispinors are defined in the following way: 

X(P~) ~- ~ *L(P")  ) '  p(p~) =- \ ( C p O u ] ) . r  (12) 

C• and ~p are phase factors that are fixed by the conditions of self-/anti- 
self conjugacy: 

S[l/2]p(pV.) = _p(pV-) (13) S~l/2]h(p o') = +_h(p~), 

for the j = 1/2 case, and 

for the j = 

[FSS[lllK(p ~) = __+h(p~), [FSS[Illp(p ~) = -+-p(pr (14) 

1 case. 13 The spin-1 counterpart of equation (2) is 

( 0 O~11)~ = ~[~l~ ~ (15) S~I l : eiO~tl _0[11 

The phase factors are determined as C s = C s = + i  for the self-charge- 
conjugatej = 1/2 spinors kS(p ~) and pS(pr and ~a = ~A = --i for the anti- 
self-charge-conjugate j = 1/2 spinors ka(p ~) and pa(p~). Equations (14) 
determine ~s = ~s = + 1 for the self [FsS[1]]-conjugate j = 1 spinors, and 
C a = C a = - 1 for the anti-self [FSSfq]-conjugatej = 1 spinors. The remark- 
able property of the self-/anti-self-conjugate spinors, which seems not to have 

t3The self-/anti-self conjugate type II spinors were shown in Ahluwalia et al. (1994a,b) and 
Ahluwalia (1994a,b) not to exist for bosons. This fact is related to the FNBWW-type construc- 
tion and it follows from the analysis of Ahluwalia et al. (1993). However, [FsS C] self-/anti- 
self conjugate type II spinors are introduced there. 
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been realized before the work of Ahluwalia, is that they cannot be in definite 
helicity eigenstates. In fact, let the 2-spinors +h,R(p~) be an eigenstate of the 
helicity operator 

j . ~  h ~bLR(P ) = hqbh,R(P ~) (16) 

Then, by using the Wigner identity [see equation (3)], we can convince 
ourselves that 

J ' P  Otjj[+~,R(P~)] * = -hOL/][+~,R(P~)] * (17) 

Thus, if +hn(p~) are eigenvectors of J -0 ,  then O[jl[~bhn(p~)] * are eigenvec- 
tors of J - 0  with opposite eigenvalues to those associated with +L,n(Ph ~) 
(Ahluwalia, 1994a,b). The unusual properties of the type II spinors under 
space (time) reflections have also been noted by Ahluwalia and co-workers. 
They are not eigenspinors of the parity operator; see formulas (36a,b) and 
(37a,b) in Ahluwalia (1994b). 

The key test for a Majorana neutrino is neutrinoless double-beta decay. 
An antineutrino emitted in the beta decay of one neutron is supposed to 
interact with another neutron and to cause it to transform into a proton and 
an electron. So in the final state there are two protons, two electrons, and 
no neutrinos, (A, Z) --~ (A, Z + 2) + 2e-. The conservation of lepton number 
is violated. Such a possibility, originally proposed by Racah (1937), has not 
yet been observed in experiment in spite of the fact that the available phase 
space for this process is larger than for the two-neutrino double-J3 decay 
(Furry, 1938, 1939). The experimental bound for the half-life of neutrinoless 
[3 decay is Tl/2 > 2 • 1024 years [the enriched isotope 76Ge w a s  used (Balysh, 
1992, 1994)]. The failure to observe it was explained by stating that apart 
from the nonconservation of lepton number, the Racah processes is inhibited 
by helicity. In order to complete the second step of the Racah process, the 
antineutrino has to flip its helicity and tums itself into a neutrino.14 Rosen 
(1992) has shown that such a flip may be induced only by a Majorana 
mass term: "Even if right-handed currents provide the phenomenological 
mechanism for no-neutrino decay, the fundamental mechanism underlying 
the process must be [the presence of] neutrino mass [term]." In the case of 
neutral particles electric charge conservation (superselection rules) no longer 
forbids transitions between particle and antiparticle PeL ~ PeR or  VeL ~ PeR" 
It is these oscillations that provide the ground for the Racah process. The 
first theoretical model of neutrino oscillations was proposed by Pontecorvo 
(1957) 15 (see also Maki et al., 1962), by using the analogy with oscillations 

14Of course, this explanation is appropriate only in the framework of the Standard Model. 
~SAs mentioned in Rosen (1992), some rumors of a positive result concerning no-neutrino 

decay were circulated at the end of the 1950s. 
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in the K~ ~ spinless meson system (Gell-Mann and Pais, 1955; Pais and 
Piccioni, 1955). This old idea eventually went out of use, but it has found 
new life in the idea of oscillations between different flavors (Gribov and 
Pontecorvo, 1969; Bilen'kii and Pontecorvo, 1977, 1978; Bilen'kii, 1987; 
Bilen'kii and Petcov, 1987, 1989; Pontecorvo, 1971; Bilenky and Pontecorvo, 
1976a,b; Fritzsch and Minkowski, 1976; Eliezer and Swift, 1976) in connec- 
tion with the discovery of muon and "r-lepton neutrinos. 

Since in the Section 3 I am going to deal with a scheme of neutrino 
oscillations on the basis of a Majorana-like theory with type II spinors, let 
me reproduce here the main points of the well-known flavor mixing scheme ~6 
and of the commonly used consideration of neutrino mass terms. 

Schemes of neutrino mixing are usually characterized by the type of 
the relevant mass tenn. According to the modem literature it is possible to 
form the following mass terms in the Lagrangianl7: 

�9 Dirac mass term: 

~(~D ~. __ E ~I'RMI'II)IL + h.c. (18) 
l',l=e,l.z,'r,.. 

�9 Majorana mass term (left-left): 

m 

~ M  ~_ - - !  E (VI'L)CMI'I vlL + h.c. (19) 
2 l,l=e,wr.." 

�9 Dirac plus Majorana mass term: 

~D+M = _ !  E (VI'L)CM~'IVIL - E 
2 l'l=e,l~,,r.., l,l=e,l~,,r... 

YI'RM~'IPIL 

_ 1 ~ ~I'RM~,t(VIR) c + h.c. (20) 
2 l',l=e,p~,'r... 

So, in the general case it is necessary to consider three (six) mass eigenstates 
that correspond to the diagonalized mass matrix obtained by the unitary 
transformation with the 3 | 3 (or 6 Q 6 in the case of the D + M mass 
term) matrix, e.g., VIL = ~3=1 UtiviL. We will denote the mass eigenstates 

~6More extended consideration can be found in Bilen'kii and Ponteciorvo (1977, 1978), Bilen'kii 
(1987), Bilen'kii and Petcov (1987, 1989), Hughes (1991), and Rolnick (1994). 

~TThe present experimental data restrict the number of light neutrino species to three (electron, 
muon, and "r-lepton neutrino) (Adriani et al., 1992). The astrophysical limit N, ----- 4 was 
given in Steigman et al. (1986). 
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E vi), i = 1, 2, 3. Thus, one can obtain the diagonalized mass term in the 
Lagrangian: 

3 
~ D  = -- ~ mif)il)i (21) 

i=1 

~M(D+M) 1 3(6) 
= ---- ~ mff(iXi 

2 i= t  
(22) 

The most general mass matrix (Dirac and Majorana mass term) can be 
represented in the following form: 

0 0 m L mD\/t)L \ 
- - - o o m s  m~|I(~,~)c| 

~ L R M ~ L , R  = (t~L (t~R) c (-~L) c t ~ R ) m L  mD 0 O / | ( , L ) C |  (23) 

\ m e  mR 0 O/\•R / 

In the vacuum, mass eigenstates propagate independently, i.e., let assume 
that they are orthogonal. If a physical state is the linear combination of mass 
eigenstates which have different masses (for the sake of simplicity we consider 
only two species), one has 

lYe(0)) = COS 0~ [V~) + sin 0~ Iv2) 

]%(0)) --sin 0~ Ivl) + cos 0v Iv2) 
(24) 

The partial content of species in it may vary with time. Suppose that at time 
t = 0 we have the mixing (24); then, at a later time t, 

Ire(t))  = COS 0v e-iE'tlu~) + sin 0~ e-Z~2qv2) 
= (e-iElt  COS20v + e-E2 t sin20v)]l)e(0)} 

+ sin 0~ cos 0~ (e -ie2' - e -e~t )]%(O))  (25) 

and 

1%(0) = - s i n  0~ e - ; E " l u l )  + c o s  0~ e-E2'lv2) 
= sin 0~ cos 0~ (e -e2t - e-iEl')lVe(O) ) 

+ (e-W2 t cos20~ + e - e l  t sin%)lv~(0)) (26) 
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Thus, an electron neutrino produced at t = 0 has nonzero probability of being 
a muon neutrino at a later time (and vice versa). The probability is calculated 
to give 

P ~ e ~  = I ( 1 ) p - ( 0 ) l V e ( t ) ) l  2 

= [sin 0. cos 0v (e -iE2' - e-ielt)[ 2 

= 2 sin20~ cos20. [1 - cos(E1 - Ez)t] (27) 

For the sake of completeness let us note that 

P~e-~e = I{Ve(O)[ve(t))l 2 = 1 -- sin220~ sin ~ (E2 - EOt (28) 

Since in the high-velocity limit (p > > m) 

- 

EL - -  E2 = ( p a  + m~)1/2 _ (p 2  + m~)l /2  ~ _ _  ( 2 9 )  
2p 

one obtains 

P . . . .  ~ 2 sin20~ cos20~ [ 1 - c o s (  m~ -m~ '~  c3 ] ~pp ] ~- t (30) 

where we restored c and h in order for the cosine to be dimensionless. Since 
the velocity of the neutrino is approximately (?) equal to the light velocity, 
one has 

Pve~V~2s in2Ovcos20v  [1 - cos~k{m~-mZg) c Z x ] ~ p  

_- sin O cos O (1-cos   ) 
where 

4'rrph 
112 -- (m 2 _ m2)c 2 (32) 

is the "vacuum oscillation length." In the case of almost "degenerate" 
neutrinos (m~ - m2 z) ~ (10 -2 eV/c2) 2 the "oscillation length" I12 is of the 
order of meters. For the numerous literature on other versions of the oscilla- 
tions (including three species, etc.), see a recent review (Gelmini and 
Roulet, 1994). 
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Present-day experiments have not detected any such oscillations for 
terrestrially (nuclear reactors, accelerators) created neutrinos. This is usually 
explained by the very small mass differences between eigenstates. On the 
other hand, the study of solar neutrinos reveals a strong possibility that, 
before they reach the earth, the neutrinos undergo a significant oscillation. 
Besides vacuum oscillations, plasma processes also should be taken into 
account in the analysis of the solar neutrino flux. However, we are not going 
to discuss here the transmission through matter [the Mikheyev-Smirnov- 
Wolfenstein effect (Wolfenstein, 1978; Mikheyev and Smimov, 1986a,b,c)], 
referring the reader to the review by Kuo and Panteleone (1989). 

For the moment, many physicists do not consider seriously Pontecorvo's 
original idea. "Since the helicity of a free particle is conserved, in vacuum 
the oscillations vL ---) VR cannot occur.. .  For the above reason it was generally 
supposed that Pontecorvo's original oscillations are just the oscillations of 
active neutrinos into sterile states [e.g., vL ~ VL], whereas the true neutrino- 
antineutrino oscillations were considered impossible" (Akhmedov et  al., 
1993).18 Nevertheless, the same authors realized that under certain conditions 
particle-antiparticle oscillations can occur and revisited the original idea on 
the basis of the introduction of magnetic (or electric) dipole moment of the 
neutrino with the addition of a neutrino of the other species. A similar 
conclusion was reached by Hughes (1991, p. 378), who said that "traversal 
of the solar magnetic field may flip the neutrino spin." However, the estimated 
order of the transition magnetic moment is lx~ -- 10-1~_ 10-10 Ixs. "[Neverthe- 
less], resonant effects in a full treatment may well enhance the spin-flip to 
a level where it is important." 

The history of the Majorana theory (as well as of neutrino physics itself) 
is very dramatic: one can see from the above that many outstanding physicists 
were not able to find common answers on the experimental consequences of 
this description. 

Next, in the following section we shall work with spin-1 fields in the 
Weinberg formulation. Therefore, it is useful to repeat the key points of this 
par t i cu lar  model presented in (Weinberg, 1964a,b, 1969; Sankaranarayanan 
and Good, 1965a,b; Sankaranarayanan, 1965; Tucker and Hammer, 1971; 
Ahluwalia et al., 1993; Ahluwalia and Goldman, 1993; Dvoeglazov, 1993b, 
1994a-e). The pioneering study of the (j, 0) �9 (0, j )  representation space 
for description of higher spin particles was undertaken by Weinberg (1964a,b, 
1969). This approach is on an equal footing with Dirac's description of spin- 
1/2 particles and, in fact, has its origin from Wigner's (1939) classic work. 
In the Weinberg theory a 2(2j + 1) bispinor is constructed from left- and 

18Compare Akhmedov et al. (1993) and Rosen (1992, pp. 4, 5) on neutrino-antineutrino 
oscillations. 
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right-spinors qbL and qbR transforming according to the (j, 0) �9 (0,j) represen- 
tation of the Lorentz group. Without reference to any wave equation, it can 
be shown that 

(j, 0): +R(p ~) = AR(p ~ ~/~r r = exp(+J.q~) +R(/~ ~) (33) 

(0, j): +L(p ~) = AL(p r ~/~")qbL(/~ r = e x p ( - J ,  q~) +L(/5~) (34) 

where AL and AR are Lorentz boost matrices for left and right j-dimensional 
spinors from the rest system/~; q~ are the Lorentz boost parameters; the 
operator J is given by the angular momentum matrices. The Weinberg equa- 
tion contains solutions with tachyonic dispersion relations) 9 Tucker and 
Hammer (1971) showed that it is possible to reformulate the 2(2j + 1) theory 
and to obtain spin-j equations which possess the correct  physical dispersion. 
Positive- and negative-energy spinors coincide in their construct. However, 
the introduction of electromagnetic gauge interaction in their equation for j 
= 1 mesons appears to be difficult. The resulting theory is not renormalizable 
for j >- 1. Another reformulation has been recently proposed. Based on the 
analysis of the transformation properties of left and right spinors and a choice 
of appropriate rest spinors (spinorial basis), Ahluwalia et al. (1993) noted 
that it is possible to construct a Dirac- l ike  theory in (j, 0) �9 (0, j )  space for 
arbitrary spinj (also see Sankaranarayanan and Good, 1965a,b). The remark- 
able feature of this construct is that the boson and its antiboson have opposite 
relative intrinsic parities. Such a theory has been named the Foldy-Nigam- 
Bargmann-Wightman-Wigner (FNBWW)-type quantum field theory. 
Finally, in Dvoeglazov (1994b-e) I give another Weinberg-Tucker-Hammer 
equation ("Weinberg double") with a correct physical dispersion. These equa- 
tions turn out to be equivalent to the equations for the antisymmetric tensor 
FCv and its dual, which can be deduced from the Proca theory. The field 
consideration of the Weinberg doubles partly clarifies contradictions with 

19The massless first-order "Weinberg" equations for any spin are proven in Ahluwalia and 
Ernst (1992), Table 2, to possess other kinematical acausalities. In addition to the correct 
physical dispersion E = -+p, there is a wrong dispersion relation E = 0 in the case j = 1 
(in the case of higher spins one has even more acausal solutions). This cast doubt on their 
application for all processes (including quantum electrodynarnic processes). Nevertheless, 
the massless limits of the modified 2j-order Weinberg equations (/e u,v = --- 1 for bosons) 

[~I~...~2jO~LO~2 .. .  O~2s + / e  ,,vm zj] xlt(x) = 0 (35) 

turn out to be well defined and have no kinematical acausality (Ahluwalia and Ernst, 1992). 
The -/-matrices are covariantly defined 2(2j + 1) | 2(2j + 1) matrices. See also Dvoeglazov 
(1993a,b, 1994a-e) and Dvoeglazov and Khudyakov (1994) for discussion of the connection 
of the Weinberg formulation with the antisymmetric tensor field description and for attempts 
to explain the origins and the consequences of incorrect dispersion relations. 



Neutral Particles 2479 

the Weinberg theorem 2~ in Hayashi (1973), Kalb and Ramond (1974), and 
Dvoeglazov (1993, 1994a). The contradictions were caused by the application 
of the generalized Lorentz condition [formulas (18) of Hayashi (1973)] to 
physical quantum states, which resulted in equating the eigenvalues of the 
Pauli-Lyuban'sky operator to zero. The propagators for the Weinberg- 
Tucker-Hammer construct have also been obtained (Dvoeglazov, 1994d). 

However, these new constructs deal with Dirac-type spinors (type I 
spinors) and they are applicable mainly to charged particles. Many questions 
related to neutral particles are left unsolved in Ahluwalia et al. (1993), 
Ahluwalia and Goldman (1993), and Dvoeglazov (1994b-e). 

3. NEW  FUNDAMENTAL EQUATION P R O P O S E D  BY 
AHLUWALIA AND RELEVANT PHYSICA L CO N S EQ U EN CES  

The general wave equation for any spin in the instant-front formulation 
of QFT is given in Ahluwalia (1994a,b) as 21 

( - i  ~ exp(J" ~)  O ~ j  exp(J ,  q~)) 

~x exp( -J .q~)  E~O~- 1 exp( - J .qo )  - 1  

k(p ~ ) = 0  (36) 

The particular cases (j = 1/2 and j  = 1) are also given there [equations (31) 
and (32), respectively]. The kS(p ~) appear to be the positive-energy solutions 
with E = +(m 2 + p2)1/2, the hZ(pr negative-energy solutions with E = 
_ (m 2 + p2)1/2 for both spin-l/2 and spin-1 cases. However, to rewrite these 
equations in a covariant form is a difficult task. For instance, an attempt by 
Ahluwalia to put the equation in the form (h~Vp~p, + mh~p~ - 2rn21)h(p ~') 
= 0 was in a certain sense misleading. He noted, "it turns out that [matrices] 
k ~ and h~ do not transform as Poincar6 tensors." Below I try to explain how 
the equations for k ( p  ~) and p(pr spinors can be rewritten in a covariant form. 

The crucial point in the derivation of equation (36) is the generalized 
Ryder-Burgard relation for type II sp inorsy  

[qbh(/~t~)] * = ~ts.lqbhL(/~ ~) (37) 

~~ Weinberg theorem says that for massless particles B - A = helicity if the field transforms 
on the (A, B) Lorentz group representation. 

21 See the corresponding equation in the light-front formulation in Ahluwalia et al. (1994a). 
22Ahluwalia et aL (1993) and Ahluwalia and Goldman (1993) call the relation d~R(/~ ~) = 

-++L(/~ ~) for type ! spinors (in fact, for the Dirac bispinor) the Ryder-Burgard relation; see 
also Ryder (1987, p. 44). Throughout this paper I also use this name, but this relation can 
be found in earlier papers and books; see e.g., the discussion surrounding equations (25, 
26) of Chapter 5 of Novozhilov (1975). It can be deduced also from equation (22a) of 
Faustov (1971). 
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where 

/e: 1 (ei 01 00) 
0 e -i2+ 

h is the helicity, and + is the azimuthal angle associated with p. In this 
framework (j = 1/2 case) the best that can be done is to rewrite (36) in the form 

~st'Y X Pl3 + 1 h(p ~) = 0 (39) 

(0 is the polar angle associated with p) by using the identities 

[~r X P]3 
Ot~/2~-=wz~ -tl/21--tlm icrl sin dO - icr2 cos dO = i (p2 + p2)l/z 

and 

[ r  x p ] ( o ' - p )  = - ( o ' . p ) [ ~ r  x p]  = io 'p  2 - i p ( o " . p )  

(40) 

(41) 

exp(_+~.q~/2) = cosh(q~/2) + (ere) sinh(q0/2), r = P = P/IPI 

(42) 

However, the obtained equation cannot be considered as a dynamical equation 
(the energy operator is not present). In fact, (39) is only a reformulation of 
the condition of self-/anti-self-conjugacy. 

Let us undertake another attempt. From the analysis of the rest spinors 
[formulas (22a)-(22b) and (23a)-(23c) of Ahluwalia (1994b)] one can con- 
elude that another form of the generalized Ryder-Burgard relation is possible. 
Namely, the form connecting 2-spinors of the opposite helicity is 

[doh(/~tL)]* = (__ 1)l/2-he-i(Ol+O2)O[ll2]doLh(l}~) (43) 

for the j = 1/2 case, and 

[dohL(i/}la)]* : (--  1)l-he-i~O[lldoLh(~ ~) (44) 

for the j  = 1 case (8 = 81 + 83 for h = _+ 1 and 8 = 282 for h = 0). Provided 
that the overall phase factors of the rest spinors are chosen to be 01 + 02 = 
0 (or 270 in the spin-l/2 case and 81 + 83 = 0 = 82 in the spin-1 case, the 
Ryder-Burgard relation is written 

[doh(ff]~)]* = ( _  1)J-hO[j]doLh(lj~) (45) 

This choice is convenient for calculations. The same relations exist for right- 
handed spinors doR(/} r in both the j = 1/2 case and the j = 1 case. 
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By using (45) and following the procedure of deriving the wave equation 
developed in Ahluwalia et  aL (1994a,b) and Ahluwalia (1994a,b), one can 
obtain for the j = 1/2 case (fi = ",/~pr 

[i 5/3+ I/3 5/0-lJ* l/z(p )=O (47) 
ttere we defined new spinor functions: 

{iOl/e[+[UZ(p~)]*'~ 
'Ir~/z(P~) = t +~-,,2(p~) j or 

a'~(+At/2(plJ') = t (b~ 1,2(p~. ) ) o r  

(-iO,,2[++"Z(p~)]* 
aIt(-at/2(PP') = t qbL-i/2(P~ ) o r  

�9 { + U 2 ( p  '~) '~ 
~ 1 2 ( p ~ )  = - ,  [ _ i e , , 2 t 4 , Z , , 2 ( p . ) ] . ]  

\ l 

(48) 

1~,2(p ~) = i [_ iOm[r  } 

(49) 

~?t,2(p,  ~) = ~ Ve, ,~ [+~, ,~(p, . ) ] . }  

(50) 

�9 (_aT/2(p~ ) = - i ti e,/z[~b~ ,/2(pp.)l.} 

(51) 

As opposed to k(p~) and p(p~), these spinor functions are the eigenfunctions 
of the helicity operator of the (1/2, 0) �9 (0, 1/2) representation space, but 
they are not self-/anti-self-conjugate spinors. 

Equations similar to (46, 47) can also be obtained by the procedure 
described in foomote 1 of Ahluwalia (1994b) with type I spinors ( ~  = 
column(r ~) qbL(p~))) if we take the Ryder-Burgard relation in the form 

6n(/~ ~) = +i~bL(/~) (52) 

Equations of the kind (46, 47) have been discussed in the literature (Sokolik, 
1957). Their relevance to the problem of describing the neutrino has been 
noted in the cited paper. The properties of these bispinors with respect to the 
parity ('70) operation are the following [cf. formulas (36a,b) in Ahluwalia 
(1994b)]: 

.,/o~(+qa(p,V.) = _ i{ ~(_.at/z(p~) } c (53) 

VoXIt(-5)l/z(p'~) = +i{~(+zt/2(p~)} c (54) 
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~,0 ' t '~ta(p '~) = - i{ ' t~ t /2 (p  ") }c (55) 

yoqt(-At/z(p '~) = + i { ~(+S]/z(pW) } c (56) 

By using the formulas relating ~ ,  equations (48)-(51), with self-/anti- 
self-conjugate spinors, it is easy to find corresponding equations for spinors 
k(p~) and p(pr In the case of the spin-l/2 field we obtain 

/3kS(p ~) + imkS~(p ~) = O, ppS(p~) _ impS~(p~) = 0 (57) 

/3k~(p ~) - imk~(p ~) = 0, pp~(p~) + impS(p ~) = 0 (58) 

/3k'~(p ~) - imkA(p ~) = 0, /3pa(p ~) + imp~(p ~) = 0 (59) 

pX~(p") + imX~(p ~) = 0, /3p~(p~) - imp'~(p~) = 0 (60) 

(provided that m r 0). The indices 1' or + should be referred to the chiral 
helicity introduced in Ahluwalia (1994a, p. 10). If we take similarly to 
Ahluwalia (1994b) k],(p~), [and p]~(p~)] as the positive-energy solutions 
and k.~,(p~) [and p~(p~)] as the negative-energy solutions, we can write 
(57)-(60) in the coordinate space 

O~-/~k.~(x) + / e  ~mk_,~(x) = 0 (61) 

0~',/~p~(x) + / ~  ~mp_,o(x) = 0 (62) 

where/,~ ~ = + 1, with the plus sign if "q = I and the minus sign if -q = 1,. 
These equations (61) and (62) are very similar to the Dirac equation; however, 
the sign of the mass term can be opposite and spinors enter in the equations 
with opposite chiral helicities. The Dirac equation with the opposite sign for 
the mass term has been considered (in different aspects) in (Markov, 1937, 
1963, 1964; Belinfante, 1939; Belinfante and Pauli, 1940; Brana and Ljolje, 
1980). Equations (61), (62) should be compared with the new form of the 
Weinberg equation for j  = 1 spinors in a coordinate representation (Ahluwalia 
et al., 1993; Ahluwalia and Goldman, 1993). 

One can incorporate p spinor states in equations by using the identities 
(48a,b) of Ahluwalia (1994b): 

p~(p~) = -iMt(p~), 

p~(p~) = +ik~(p~), 

Thus, one arrives at 

/:3k~(p~) + mp~t(p~ ) = 0, 

pp~(p~) + mk~(p  ~) = O, 

pS~(p ~) = +ikq(p ~) (63) 

p'~(pW) = -ik~(pW) (64) 

/~X~(p~) + mp~(p~) = 0 (65) 

~p~(p~) + mk~+(pW) = 0 (66) 
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It  is also useful to note the connection of  type II  s p i n o r s  h ( p J ' )  and 
9(p~) with the type I Dirac bispinor t~D(p ~) and its charge conjugate (qj~(p~))c: 

XS(p~) _ 1 - 2 'Y5 t~D(pp.) + 1 + 2 ~5 (q/D(p..))c (67) 

1 - "Y5 1 + "Y5 (t~O(p~))~ ( 6 8 )  
~A(p~) _ 2 +D(p~) 2 

1 + ~5 OD(p~) + 1 - "/5 
pS(p~,) _ ~ 2 (~O(p~))~ (69) 

p A ( p ~ )  - -  1 + "15 1 - -  ~ 5  
,D(p~) 2 (~D(p~))~ (70) 

Equations (65), (66) can then be rewritten in a form with type I spinors: 

(~ + m)t~Dl/z(p ~) + (~ + m)'ys(qJ~l/z(p~)) ~ = 0 (71) 

(~ -- m)"tst~~ ~) -- (fi -- m)(t~~ c = 0 (72) 

(P + m ) ~ l / 2 ( p  ~) -- (15 + m)"ls( t~m(p~))  ~ = 0 (73) 

(~ - m)~5~a/2(p ~) + (fi -- m)(t~~ ~ = 0 (74) 

So, we can consider the (t~O(p~)) c [or "r ~), or their sum] as the positive- 
energy solutions of the Dirac equation and OD(p~) [or "/5(~@(p~)) c, or their 
sum] as the negative-energy solutions. The field operator can be defined by 

= ~ d3p 1 
(2703 2p0 ~h [(t~D(Pr exp(-- ip. x) J 

+ t~(p~)b~ exp(ip.x)] (75) 

A similar formulation has been developed by Nigam and Foldy (1956). 
Let us note an interesting feature. We can obtain another interpretation 

[namely, ~D(p~) corresponds to the positive-energy solutions and (t~D(p~)) ~ 
to the negative ones] if we choose other overall phase factors in the definitions 
of the rest-spinors d0L(/~ ~) and dOR(/~ ~) [formulas (22) of Ahluwalia (1994b)]. 
The signs of the mass term depend on the form of the generalized Ryder-  
Burgard relation; if 01 + 02 = ,rr, the signs are opposite. One can obtain the 
generalized equations (57)-(60) for an arbitrary choice of the phase factor. 
For XS(p ~) spinors they are 

{ i/)k~(p ~) - m~k{(p ~) = 0 
i/0X{(p ~) + m~-h~(p ~) 0 

(76) 
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where 

e_i(01+02) (77) 

and m 4= 0. In the case 01 + 02 = _+'rr/2 we also have the correct physical 
dispersion, p~ - p: = m:, for h(p ~) spinors. 

Next, one can see from (61), (62) that neither Xs'a(x) nor pS'A(x) is an 
eigenfunction of the Hamiltonian operator (we have different chiral helicities 
in the "Dirac" equations). They are not in mass eigenstates. However, tb D 
and (~D)c are in mass and helicity eigenstates. Nigam and Foldy (1956) 
showed that even without a resort to a plane-wave expansion, if the eigenvec- 
tor I qb) has the eigenvalue " - 1 "  of the normalized Hamiltonian I21/IEI in 
Hilbert space, then t qb c) has the eigenvalue "+ 1." This analysis is in accor- 
dance with the Feynman-Stiickelberg interpretation of an "antiparticle" as a 
particle moving backward in time (Sttickelberg, 1941; Feynman, 1949), which 
seems to be deeper than Dirac's hole concept, because the former permits 
us to describe bosons on an equal footing with fermions (Ahluwalia et al., 
1993; Ahluwalia and Goldman, 1993). Thus, one can come to the conclusion 
that matrix elements, e.g., (hA_n(0), I ks(t)), have nonzero value at the time t 
[cf. equations (27), (28)]: 

(kAnlks(t)) ~ sin2(Et~, 
\hi 

(hs_nl)ta(t)) ~ sin2(Et~, \h] 

( h s _ n l h s ( t ) )  ~ COS2(-~) (78) 

(ka-nl)tZ(t)) - cos2(h  ) (79) 

We are ready to ask whether the high-energy neutrino described by the field 
[equation (47) of Ahluwalia (1994b)] 

1)ML I (2"rr) 3 d3p 1 = _ 2po ~ [kS(p~)a~(P~) exp(-  ip "x) 

+ k~(p~)a~(p ~) exp(ip.x)] (80) 

can oscillate from the state of one chiral helicity to another chiral helicity 
with the oscillation length of the order of the de Broglie wavelength, h = 
h/p. 

For the spin-1 case the situation differs in some aspects. Direct calcula- 
tions yield a nondynamical quadratic (in projections of the linear momen- 
tum) equation: 

[~ x ~llp~ + ~22pz - 2"yI2plp2 _ p~ 1])t(P ~ ) = 0  (81) 
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It can also be written in the form z3 

( ~O[~lD(O,~)(i [or X P ] 3 ' ~  

~xD(t,o)(i [cr X P ] 3 / \  

\ 4p 
- t I ] ~ P  

) 

/ 

= 0 (82) 

which is obtained by using, e.g., the technique of Novozhilov (1975), D(J,~ 
are the Wigner functions for the (J, 0) representation, D(~ for the 
(0, J)  representation. 

If we take another formulation of the Burgard-Ryder relation (45), 
we have 24 

~l~p~p~hS(p r~) - m2k~(p ~) = 0, 

~p~p~hS~(p ~) - m2h{(p ~) = 0, 

~l~p~pvkS(p  ~) + m2hS(p ~) = 0, 

~y~,.p~p~h'~(p ~) + mZh~(p ~) = 0, 

~ p ~ p ~ h ~ ( p  ~) + m2ha(p ~') = 0, 

~r ha(p~)  _ m~hA(p~) = O, 

~ p ~ p ~ p ~ ( p ~ )  - m2p~(p ~) = 0 (83) 

~l~vp~p~pS~(p ~) - m2p~(p ~) = 0 (84) 

~ p ~ p ~ p S ( p ~ )  + m2pS(p~) = 0 (85) 

~ p ~ p V p ~ ( p ~ )  + mZp~(p ~) = 0 (86) 

~t~pFp~p~(p ~) + m2p~(p ~) = 0 (87) 

~&~p~p~pA(pr _ m2pa(p~) = 0 (88) 

There exist identities analogous to (63), (64). For instance, with the 
choice of the phase factors, corresponding to that in (83)-(88) we have 25 

p~(p~) = +X~(p~), O~(p~)= +a~(pr pS(p~) = _kS(p~)  (89) 

p?(p~)= _X~(p~), O~(p~)= _kS(pC), p a ( p ~ ) =  +hA(pC) (90) 

Therefore, 

~,r ~) - mZp~j.~(p F) = 0, 

V~.p~p~pSrj.~(p ~) - m2h~,~(p ~) = 0, 

~l~pr F) - mZp'~,~(p ~) = 0 

(91) 

"y~,p~ff'p'~j.~(p~) - m2h'~(p  r = 0 

(92) 

Applying relations between type II and type I spinors similar to (67)-(70) 
except for pS ~ pa, we obtain 

23We use the notation in terms of the Barut-Muzinich-Williams matrices here (Barut et 
al., 1963). 

Z4Again, one can obtain the opposite signs in the equations if one takes ~1 + ~3 = ~r for ~bL(/} ~) 
and correspondingly for (bn(/~). 

25Compare with formulas (21a)-(21c) in Ahluwalia et al. (1994a) and (48), (49) in Dvoeglazov 
(19940. Thus, the form of these relations depends on the choice of the spinorial basis, 
normalization and is governed by the covariance of the theory under discrete symmetries. 
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(~r - m2)t~D(p p') + ( ~ p r  -- m2)'yS(t~D(p~)) c = 0 (93) 

(~l~vp~pV + m2)~/5~l/D(p~) _ (.y~p~pV + m2)(~iD(pO.))c = 0 (94) 

( ~ v p ~ p  ~ -- m2)~D(p ~) -- ("y~p~pV -- m2)~5(OD(p~)) c = 0 (95) 

( ~ , p ~ p ~  + m2)~/5OD(p ~) + ('yr162 + m2)(OD(p~)y = 0 (96) 

This tells us that I]J D [or '~/5(I]/D) c] should be considered as the positive- 
energy solutions of the modified Weinberg equation (Ahluwalia et al., 1993; 
Ahluwalia and Goldman, 1993) and (t~D) C (or ~5~ D) as the negative-energy 
ones. The analogs of equations (61), (62) can be written as 

"y~vOl~Ov~..q(x ) q - /~  s,am2h_n(x) = 0 (97) 

"t~vOr + / ' z  s, am2p_n(x) = 0 (98) 

whe re / e  s.a = + 1; the plus sign is for positive-energy solutions hS(p ~) [or 
pS(p~)] and the minus sign is for negative-energy solutions ha(p~) [or pa(p~)]. 
This refers to "q = 1' or "q = $. For "q = --->, it is easy to see that equations 
(85), (88) have the opposite signs for the mass terms. 

The presence o f / e  r+ in the j = 1/2 case o r / e  S,A in the j = 1 case 
suggests that we have obtained examples of FNBWW-type quantum field 
theory. The analysis of the field operators in the Fock space reveals that the 
fermion and its antifermion can possess the same intrinsic parities (Nigam 
and Foldy, 1956; Ahluwalia, 1994d). Bosons described by (93)-(96) are 
found (Ahluwalia et al., 1993; Ahluwalia and Goldman, 1993) to be able to 
carry opposite intrinsic parities, depending on the choice of the field operator. 

4. C O N C L U D I N G  R E M A R K S  

In this paper I have presented an overview of the theory of  truly neutral 
particles. The question of  applicability of the new constructs in the (j, 0) 
�9 (0, j )  representation space to neutrino physics has been discussed. The 
connection of the new models with the theories envisaged by Foldy and 
Nigam (1956) and Bargmann, Wightman, and Wigner (see Wigner, 1962) 
has been found. The particle properties with respect to the operation of parity 
discussed in the present paper [and in Ahluwalia et al. (1993, 1994a,b), 
Ahluwalia and Goldman (1993), and Ahluwalia (1994a,b)] are unusual. In 
fact, it was shown that these properties depend on the choice of the field 
operator. Moreover, it was found that the physical content depends on the 
choice of the spinorial basis. Research in the framework of other constructs 
(Weinberg, 1964a,b, 1969; Tucker and Hammer, 1971; Dvoeglazov, 1994b-e) 
in the (1, 0) @ (0, 1) representation space deserves further elaboration. 
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Unfortunately, the present experimental data do not yet permit us to 
make reliable conclusions on the sufficiency of the Standard Model (and its 
limits). However, the wide interest in neutrino physics in the theoretical 
community and the forthcoming experimental fac i l i t i es - -SUPER-KAMIO- 
KANDE, SNO (Sudbury), BOREXINO, ICARUS (CERN-Gran Sasso), HEL- 
LAZ, HERON [see, e.g., the proceedings of  the recent neutrino conference 
(Anon, 1994)]-- leave us with hope that the puzzles of mysterious neutral 
particles can be resolved in a short time. 
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